Reactive species
Human;Mouse
Antibody type
Polyclonal Antibody
Gene Name
PABPN1 PAB2 PABP2
Protein name
Polyadenylate-binding protein 2 (PABP-2) (Poly(A)-binding protein 2) (Nuclear poly(A)-binding protein 1) (Poly(A)-binding protein II) (PABII) (Polyadenylate-binding nuclear protein 1)
Immunogen
Synthesized peptide derived from human protein . at AA range: 170-250
Specificity
PABP2 Polyclonal Antibody detects endogenous levels of protein.
Constitute
Liquid in PBS containing 50% glycerol, and 0.02% sodium azide.
Source
Polyclonal, Rabbit,IgG
Dilution rate
WB 1:500-2000 ELISA 1:5000-20000
Purification process
The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen.
Background
This gene encodes an abundant nuclear protein that binds with high affinity to nascent poly(A) tails. The protein is required for progressive and efficient polymerization of poly(A) tails at the 3' ends of eukaryotic transcripts and controls the size of the poly(A) tail to about 250 nt. At steady-state, this protein is localized in the nucleus whereas a different poly(A) binding protein is localized in the cytoplasm. This gene contains a GCG trinucleotide repeat at the 5' end of the coding region, and expansion of this repeat from the normal 6 copies to 8-13 copies leads to autosomal dominant oculopharyngeal muscular dystrophy (OPMD) disease. Related pseudogenes have been identified on chromosomes 19 and X. Read-through transcription also exists between this gene and the neighboring upstream BCL2-like 2 (BCL2L2) gene. [provided by RefSeq, Dec 2010],
Function
disease:Defects in PABPN1 are the cause of oculopharyngeal muscular dystrophy (OPMD) [MIM:164300]. OPMD is a form of late-onset slowly progressive myopathy characterized by eyelid ptosis, dysphagia and, sometimes by other cranial and limb-muscle involvement.,domain:The RRM domain is essential for specific adenine bases recognition in the poly(A) tail but not sufficient for poly(A) binding.,function:Involved in the 3'-end formation of mRNA precursors (pre-mRNA) by the addition of a poly(A) tail of 200-250 nt to the upstream cleavage product. Stimulates poly(A) polymerase (PAPOLA) conferring processivity on the poly(A) tail elongation reaction and controls also the poly(A) tail length. Increases the affinity of poly(A) polymerase for RNA. Is also present at various stages of mRNA metabolism including nucleocytoplasmic trafficking and nonsense-mediated decay (NMD) of mRNA. Cooperates with S